Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A monoclinic polymorph of hypoxanthine

Rui-Qing Yang^a and Yong-Rong Xie^{b*}

^aHospital, Gannan Normal University, Ganzhou 341000, People's Republic of China, and ^bKey Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Ganzhou 341000, Jiangxi, People's Republic of China Correspondence e-mail: xieyr@gnnu.edu.cn

Received 19 May 2007; accepted 20 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.109; data-to-parameter ratio = 12.1.

A monoclinic polymorph of hypoxanthine (systematic name: 1,7-dihydro-6*H*-purin-6-one), $C_5H_4N_4O$, is reported. The hydrogen-bonding motifs involve a layered structure of N- $H \cdots O$ and N- $H \cdots N$ hydrogen-bonded molecules. The mean stacking distance between adjacent layers is 3.672 Å.

Related literature

The triclinic polymorph of hypoxanthine was described by Schmalle *et al.* (1988). There are weak intermolecular C– $H \cdots N$ and C– $H \cdots O$ hydrogen bonds (Taylor & Kennard, 1982).

b = 17.960 (9) Å

c = 9.010 (5) Å

 $\beta = 107.469 (19)^{\circ}$

 $V = 566.9 (5) \text{ Å}^3$

Experimental

Crystal data $C_{3}H_{4}N_{4}O$ $M_{r} = 136.12$ Monoclinic, $P2_{1}/c$ a = 3.6725 (19) Å Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.979, T_{max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.109$ S = 1.041113 reflections

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N1 - H1 \cdots O1^i$ 2.7846 (18) 0.88 1 91 172 $N4 - H4 \cdot \cdot \cdot N3^{ii}$ 0.88 1.95 2.8208 (19) 168 $C2-H2\cdots N2^{iii}$ 0.95 2.60 3.376 (2) 139 $C5-H5\cdots O1^{ii}$ 0.95 2.48 3.1933 (19) 132 Symmetry codes: (i) -x + 1, -y + 1, -z + 1;(ii) $x-1, -y+\frac{1}{2}, z-\frac{1}{2};$ (iii) -x - 1, -v + 1, -z

Data collection: *APRX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (grant No. 50662001), the Natural Science Foundation of Jiangxi Province (grant No. 0620007), the Jiangxi Provincial Educational Foundation (grant No. 20060237) and the Gannan Normal University Foundation (grant No. 200409).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2177).

References

Bruker (2004). APEX2, SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

T = 292 (2) K

 $R_{\rm int} = 0.016$

92 parameters

 $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.19 e Å⁻³

 $0.48 \times 0.13 \times 0.11 \text{ mm}$

2981 measured reflections

1113 independent reflections

964 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supplementary materials

Acta Cryst. (2007). E63, o3309 [doi:10.1107/S1600536807030164]

A monoclinic polymorph of hypoxanthine

R.-Q. Yang and Y.-R. Xie

Comment

A triclinic polymorph of hypoxanthine (I) has been reported (Schmalle *et al.*, 1988). Here we describe a monoclinic polymorph (Figure 1). There are two hydrogen bonds of the type N1—H1···O1ⁱ with N1—O1ⁱ donor-acceptor distance of 2.7846 (18) Å and N4—H4···N3ⁱⁱ with N4—N3ⁱⁱ donor-acceptor distance of 2.8208 (19) Å (Figure 2). In addition, there are different weak intermolecular contacts (Taylor & Kennard,1982) of the form C2—H2···N2ⁱⁱⁱ with C2—N2ⁱⁱⁱ distance of 3.376 (2) Å and C5—H5···O1ⁱⁱ with C5—O1ⁱⁱ distance of 3.1933 (19) Å (Table 1). Thus, the hypoxanthine molecules form sheets approximately parallel to the (102) plane. The separations between parallel hypoxanthine molecules stacked along the *a* axis is 3.672 Å (Figure 3).

Experimental

Hydrothermal treatment of Ba(ClO₄)₂·6H₂O(0.1332 g, 0.3 mmol), Inosine(0.1610 g, 0.6 mmol), And 95% ethanol solution(4 ml) over three days at 70 o C yielded colorless plate crystals of hypoxanthine(I). The product was isolated, washed three times with 70% ethanol solution, and dried in a vacuum desiccator using CaCl₂. Yield: 15%. CH&N analysis: Calculated for C₅H₄N₄O: C 44.12, H 2.96, N 41.16%; found: C 44.05, H 2.93, N 41.04%.

Refinement

H atoms bonded to C or N atoms were placed in calculated positions, with C—H = 0.95 Å and N—H= 0.88 Å, and were included in the refinement in the riding-model approximation, and $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

Figures

Figure 1 The asymmetric unit of compound (I), with displacement ellipsoids drawn at the 30% probability level. Figure 2 The hydrogen-bonding motif in (I). Dashed lines indicate the hydrogen bonds. Figure 3. The packing of (I) in the crystal.

1,7-dihydro-6H-purin-6-one

Crystal data	
C ₅ H ₄ N ₄ O	Z = 4
$M_r = 136.12$	$F_{000} = 280$
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.595 {\rm ~Mg} {\rm ~m}^{-3}$
<i>a</i> = 3.6725 (19) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 17.960 (9) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 9.010 (5) Å	T = 292 (2) K
$\beta = 107.469 \ (19)^{\circ}$	Plate, colorless
$V = 566.9 (5) \text{ Å}^3$	$0.48\times0.13\times0.11~mm$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	1113 independent reflections
Radiation source: fine-focus sealed tube	964 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 292(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -4 \rightarrow 4$
$T_{\min} = 0.979, \ T_{\max} = 0.988$	$k = -22 \rightarrow 21$
2981 measured reflections	$l = -6 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0758P)^2 + 0.069P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
1113 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
92 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.067 (11)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.5544 (3)	0.40375 (5)	0.51583 (12)	0.0469 (3)
0.1515 (3)	0.46886 (6)	0.31417 (13)	0.0374 (3)
0.2213	0.5107	0.3658	0.045*
-0.2451 (3)	0.41739 (6)	0.08071 (13)	0.0388 (3)
0.2692 (3)	0.26683 (6)	0.31153 (13)	0.0367 (3)
-0.1664 (3)	0.28307 (6)	0.08049 (13)	0.0377 (3)
-0.3275	0.2721	-0.0109	0.045*
0.3174 (4)	0.40330 (7)	0.38534 (16)	0.0339 (3)
-0.1094 (4)	0.47339 (8)	0.17154 (16)	0.0395 (4)
-0.2006	0.5216	0.1350	0.047*
-0.0906 (4)	0.35170 (7)	0.14506 (15)	0.0329 (3)
0.1784 (3)	0.34128 (7)	0.28815 (14)	0.0317 (3)
0.0550 (4)	0.23473 (8)	0.18446 (16)	0.0394 (4)
0.0552	0.1826	0.1670	0.047*
	x 0.5544 (3) 0.1515 (3) 0.2213 -0.2451 (3) 0.2692 (3) -0.1664 (3) -0.3275 0.3174 (4) -0.1094 (4) -0.2006 -0.0906 (4) 0.1784 (3) 0.0550 (4) 0.0552	x y 0.5544 (3) 0.40375 (5) 0.1515 (3) 0.46886 (6) 0.2213 0.5107 -0.2451 (3) 0.41739 (6) 0.2692 (3) 0.26683 (6) -0.1664 (3) 0.28307 (6) -0.3275 0.2721 0.3174 (4) 0.40330 (7) -0.1094 (4) 0.47339 (8) -0.2006 0.5216 -0.0906 (4) 0.35170 (7) 0.1784 (3) 0.34128 (7) 0.0550 (4) 0.23473 (8) 0.0552 0.1826	x y z 0.5544 (3) 0.40375 (5) 0.51583 (12) 0.1515 (3) 0.46886 (6) 0.31417 (13) 0.2213 0.5107 0.3658 -0.2451 (3) 0.41739 (6) 0.08071 (13) 0.2692 (3) 0.26683 (6) 0.31153 (13) -0.1664 (3) 0.28307 (6) 0.08049 (13) -0.3275 0.2721 -0.0109 0.3174 (4) 0.40330 (7) 0.38534 (16) -0.1094 (4) 0.47339 (8) 0.17154 (16) -0.2006 0.5216 0.1350 -0.0906 (4) 0.35170 (7) 0.14506 (15) 0.1784 (3) 0.34128 (7) 0.28815 (14) 0.0550 (4) 0.23473 (8) 0.18446 (16) 0.0552 0.1826 0.1670

Atomic disp	olacement pa	rameters (A^2))

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0569 (7)	0.0343 (6)	0.0312 (6)	-0.0004 (4)	-0.0145 (5)	-0.0024 (4)
N1	0.0449 (7)	0.0273 (6)	0.0308 (7)	0.0004 (4)	-0.0026 (5)	0.0000 (4)
N2	0.0406 (6)	0.0380 (7)	0.0284 (6)	0.0014 (5)	-0.0038 (5)	0.0046 (5)
N3	0.0422 (6)	0.0294 (6)	0.0289 (6)	0.0001 (4)	-0.0039 (5)	0.0000 (4)
N4	0.0407 (6)	0.0380 (7)	0.0233 (6)	-0.0042 (4)	-0.0075 (5)	-0.0041 (4)
C1	0.0358 (6)	0.0322 (7)	0.0261 (7)	-0.0012 (5)	-0.0023 (5)	0.0016 (5)
C2	0.0429 (7)	0.0355 (7)	0.0318 (8)	0.0036 (5)	-0.0013 (6)	0.0062 (5)
C3	0.0340 (6)	0.0348 (7)	0.0244 (7)	-0.0014 (5)	0.0004 (5)	0.0012 (5)
C4	0.0338 (7)	0.0299 (7)	0.0247 (7)	-0.0005 (5)	-0.0014 (5)	0.0018 (5)
C5	0.0446 (8)	0.0320 (7)	0.0317 (8)	-0.0016 (5)	-0.0035 (6)	-0.0029 (5)
Geometric par	rameters (Å, °)					
O1—C1		1.2352 (17)	N4—	-C5	1.35	546 (17)
N1—C2		1.3553 (18)	N4—	-C3	1.35	557 (17)

supplementary materials

N1-C1	1.3908 (17)	N4—H4	0.8800
N1—H1	0.8800	C1—C4	1.4141 (18)
N2—C2	1.2980 (18)	С2—Н2	0.9500
N2—C3	1.3612 (17)	C3—C4	1.3815 (19)
N3—C5	1.3118 (17)	С5—Н5	0.9500
N3—C4	1.3788 (18)		
C2—N1—C1	125.10 (11)	N2—C2—H2	117.3
C2—N1—H1	117.4	N1—C2—H2	117.3
C1—N1—H1	117.4	N4—C3—N2	126.84 (12)
C2—N2—C3	111.78 (12)	N4—C3—C4	105.93 (11)
C5—N3—C4	103.81 (11)	N2—C3—C4	127.22 (12)
C5—N4—C3	106.41 (11)	N3—C4—C3	110.26 (11)
C5—N4—H4	126.8	N3—C4—C1	130.06 (12)
C3—N4—H4	126.8	C3—C4—C1	119.69 (12)
01—C1—N1	121.29 (11)	N3—C5—N4	113.58 (13)
O1—C1—C4	127.93 (11)	N3—C5—H5	123.2
N1-C1-C4	110.78 (12)	N4—C5—H5	123.2
N2-C2-N1	125.43 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1 ⁱ	0.88	1.91	2.7846 (18)	172
N4—H4…N3 ⁱⁱ	0.88	1.95	2.8208 (19)	168
C2—H2···N2 ⁱⁱⁱ	0.95	2.60	3.376 (2)	139
C5—H5···O1 ⁱⁱ	0.95	2.48	3.1933 (19)	132

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) -*x*-1, -*y*+1, -*z*.

